Profil Proses Berpikir Mahasiswa dalam Pembuktian Matematis pada Aljabar Abstrak

Junarti Junarti, Ari Indriani, Boedy Irhadtanto, Lia Sofia

Abstract


abstrak— Proses berpikir merupakan bagian penting yang dibutuhkan dalam pembuktian matematis. Aljabar abstrak merupakan mata kuliah analisis yang membutuhkan kompetensi pembuktian. Tujuan penelitian ini untuk mendeskripsikan proses berpikir yang terjadi ketika melakukan pembuktikan pada mata kuliah aljabar abstrak. Pada kajian ini pembuktian matematis dibedakan atas pembuktian pemenuhan syarat-syarat pada definisi suatu konsep dan pembuktian pada teorema. Metode penelitian menggunakan pendekatan deskriptif kuantitatif-kualitatif berbasis tugas, disertai instrumen tes dan wawancara. Sampel penelitian yaitu dua kelas mahasiswa yang mengikuti mata kuliah aljabar abstrak sebanyak 25 mahasiswa. Sedangkan 4 subyek penelitian dipilih berdasarkan 2 jenis pembuktian. Hasil penelitian secara kuantitatif menunjukkan proses berpikir mahasiswa yang menggunakan tahapan analogiàabstraksi sebanyak 83 %, konstruksiàanalogi sebanyak 11 %, abstraksiàkonstruksi 6%, sedangkan untuk sampai tahapan konstruksi formal masih sebesar 0%. Secara kualitatif kecenderungan subyek dalam melakukan pembuktian terkait suatu himpunan dengan operasi biner tertentu pemenuhan syarat-syarat grup/subgrup sudah menggunakan tahapan berpikir abstraksiàkonstruksi, sedangkan pembuktian bentuk teorema masih menggunakan tahapan berpikir analogiàabstraksi.  Hal ini menunjukkan mahasiswa masih adanya ketergantungan pada contoh-contoh pembuktian teorema yang terdapat pada buku.

Kata kunci—Proses berpikir, Pembuktian matematis, Aljabar abstrak

 

Abstract— The thinking process is an important part required in mathematical proof. Abstract algebra is an analysis course that requires evidential competence. The aim of this research is to describe the thinking process that occurs when carrying out proofs in abstract algebra courses. In this study, mathematical proof is differentiated into proof of the fulfillment of the conditions in the definition of a concept and proof of theorems. The research method uses a task-based quantitative-qualitative descriptive approach, accompanied by test and interview instruments. The research sample was two classes of students taking abstract algebra courses totaling 56 students. Meanwhile, 4 research subjects were selected based on 2 types of evidence. Quantitative research results show that students' thinking processes use the analogyàabstraction stage as much as 83%, constructionàanalogy as much as 11%, abstractionàconstruction 6%, while up to the formal construction stage it is still 0%. Qualitatively, the subject's tendency to carry out proofs related to a set with certain binary operations to fulfill group/subgroup requirements already uses the abstractionàconstruction thinking stage, while proving the theorem form still uses the analogyàabstraction thinking stage. This shows that students are still dependent on examples of theorem proofs found in books.

Keywords— Thinking process, mathematical proof, abstract algebra


Keywords


Thinking process, mathematical proof, abstract algebra

Full Text:

PDF

References


Abidah, A., Junarti, & Zuhriah, F. (2023). Profil Kemampuan Literasi Matematis Siswa Sekolah Dasar Dengan Gaya Belajar Auditori. Seminar Nasional FPMIPA IKIP PGRI Bojonegoro, 112–118. https://prosiding.ikippgribojonegoro.ac.id/index. php/ FPMIPA/article/viewFile/2174/1354

Buhaerah, Nasir, M., & Jusoff, K. (2022). The Students Thinking Process in Constructing Evidence with Mathematics Induction Reviewed from Information Processing Theory. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(2), 461–475.

Çetin, A. Y., & Dikici, R. (2021). Organizing the mathematical proof process with the help of basic components in teaching proof : Abstract algebra example. International Journal on Math, Science and Technology Education, 9(1), 235–255.

Dreyfus, T. (2002). Advanced Mathematical Thinking Process. In H. Buersfeld, J. Kilpatrick, G. Leder, S. Tumau, & G. Vergnaud (Eds.), Advanced Mathematical Thinking (Tall, Davi, pp. 25–40). Kluwer Academic Publishers.

Hanna, G. (2014). Proof , Explanation and Exploration : An Overview. December 2000. https://doi.org/10.1023/A

Hwang, J., & Ham, Y. (2021). Relationship Between Mathematical Literacy and Opportunity to Learn with Different Types of Mathematical Tasks. Journal on Mathematics Education, 12(2), 199-222. http://doi.org/10.22342/jme.12.2.13625. 199-222

Ioannou, M. (2019). The Challenge of Proof in Abstract Algebra: Undergraduate Mathematics Students’ Perceptions. Inter-America Conference on Mathematics Education, 1–10. https://pdfs.semanticscholar.org/a88b/436963803fcbfba2e0094 5bf1c3b40c9f11e.pdf

Junarti, Sukestiyarno, Y., Waluya, S. B., & Kartono. (2019). Peran Skema Penulisan Definisi, Teorema Dan Bukti Dalam Kemandirian Belajar Membuktian Aljabar Abstrak Dengan Pendekatan Top-Down. PRISMA, Prosiding Seminar Nasional Matematika, 2, 637–645.

Junarti, S., Mulyono, Y. L., & Dwidayati, N. K. (2020). Studi Literatur tentang Jenis Koneksi Matematika pada Aljabar Abstrak. PRISMA, Prosiding Seminar Nasional Matematika, 3, 343–352.

Junarti, & Zainudin, M. (2022). Strategi Efektif Untuk Meningkatkan Kemampuan Literasi Matematika. JPE (Jurnal Pendidikan Edutama, 9(2), 107–124. http://ejurnal.ikippgribojonegoro.ac.id/index.php/JPE

Junarti, Zainudin, M., & Utami, A. D. (2022). The sequence of algebraic problem-solving paths: Evidence from structure sense of Indonesian student. Journal on Mathematics Education, 13(3), 437–464. https://doi.org/10.22342/jme.v13i3. pp437-464

Junarti, Noeruddin, A., Boedy Irhadtanto, & Sarmidi. (2023a). Kata kunci: Kemampuan konsep limit fungsi, Prasyarat analisis riil. Seminar Nasional FPMIPA IKIP PGRI Bojonegoro, 1, 278–284. https://prosiding.ikippgribojonegoro.ac.id/ index. php/ FPMIPA/article/viewFile/2197/1378

Junarti, Yani T., A., & Amin, A. K. (2023b). Building Student’s Mathematical Connectin Abitity in Abstract Algebra: The Combination of Analogi-Construction-Abstraction Stages. Journal of Education, Teaching, and Learning, 8(1), 80–97.

Kanellos, I., Nardi, E., & Biza, I. (2018). Proof schemes combined: mapping secondary students’ multi-faceted and evolving first encounters with mathematical proof. Mathematical Thinking and Learning, 20(4), 277–294. https://doi.org/10.1080/10986065.2018.1509420

Kuswardi, Y., Usodo, B., Chrisnawati, H. E., & Nurhasanah, F. (2020). Kemampuan berpikir matematis tingkat lanjut berdasarkan tingkat kepercayaan diri mahasiswa pada pembelajaran matematika diskrit. Journal Of Mathematics and Mathematics Education, 10(2), 61–74. https://doi.org/10.20961/jmme.v10i2.47080

Panse, A., Alcock, L., & Inglis, M. (2018). Reading Proofs for Validation and Comprehension: an Expert-Novice Eye-Movement Study. International Journal of Research in Undergraduate Mathematics Education, 4(3), 357–375. https://doi.org/10.1007/s40753-018-0077-6

Rach, S., & Ufer, S. (2020). Which Prior Mathematical Knowledge Is Necessary for Study Success in the University Study Entrance Phase ? Results on a New Model of Knowledge Levels Based on a Reanalysis of Data from Existing Studies. International Journal of Research in Undergraduate Mathematics Education, 6, 375–403. https://doi.org/10.1007/s40753-020- 00112-x

Scusa, T. (2008). "Five Processes of Mathematical Thinking" Summative Projects for MA Degree. 38.https://digitalcommons.unl.edu/mathmidsummative/38

Selden, A., Selden, J., & Benkhalti, A. (2016). Proof Frameworks--A Way to Get Started , submitted as a Tennessee Technological University Mathematics Technical Report , March 31 , 2016 . March. https://doi.org/10.13140/RG.2.1.4160.9368

Tall, D. 2002. Advanced Mathematical Thinking. Kluwer Academic Publishers: London.

Tohir, M., & Maswar, M. (2021). Pseudo Thinking Process in Understanding the Concept of Exponential Equations Pseudo Thinking Process in Understanding the Concept of Exponential Equations. Journal of Physics: Conference Series, 1–7. https://doi.org/10.1088/1742-6596/1808/1/012043

Wittmann, E. C. (2021). Connecting Mathematics and Mathematics Education. In Connecting Mathematics and Mathematics Education. https://doi.org/10.1007/978-3-030-61570-3

Zahri, M., Syarifuddin, A., & Imam, M. (2020). Efektivitas Pembuktian Aljabar Abstrak Mahasiswa Calon Guru. 3, 605–611.

Zainudin, M., Fatah, D. A., & Junarti, J. (2023). Literacy and Numeracy Research Trends For Elementary School Student : A Systematic Literature Review. Journal of Education, Teaching, and Learning, 8(2), 24–31.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Seminar Nasional dan Gelar Karya Produk Hasil Pembelajaran

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.